梯形的面积教案(通用12篇)。
作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?下面是小编为大家收集的五年级《梯形的面积》教案(精选12篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
梯形的面积教案 篇1
教学内容:
混合练习(课本第84-85页,练习十九第11-18题)
教学目标:
⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。
⒉在复习与梳理中学会联系,进而提高综合分析解题能力。
教学过程:
一、复习梳理
⒈公式的复习
我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?
师生共同进行:边回顾、边画图、边讨论;
⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。
二、练习巩固
⒈独立完成练习十九的第12题--看谁正确率最高!
要求:开列已知条件;写出相应的面积公式;列式解答。
⒉完成第14题
先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。
⒊完成第13和15题
在求得面积之后,怎样选择算法求解。
三、综合提高:
讨论:
⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?
⑵三角形的`底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?
⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?
四、:
多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。
五、板书设计:
梯形面积的计算
六、教后感:
2、应用题
梯形的面积教案 篇2
教学内容:
p.21练习四
教学目标:
1,使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
2,培养灵活利用公式解决实际问题的能力。
3,培养学生良好的合作探究意识。
教学重点:
进一步掌握梯形面积的概念,能较熟练掌握梯形面积的计算方法。
教学过程:
一,画图(图:一直角)
问:你看到什么两条边上分别标上长度:4厘米,2厘米
你能联想到什么图形面积是多少
(1)长方形,长是4厘米,宽是2厘米。面积:4×2=8平方厘米
(2)三角形,底4厘米,高2厘米,面积:4×2÷2=4平方厘米
(3)梯形,补充算式”(4+3)×2÷2“,指名画完该图形。
关注细节:
(1)在计算时,最后的单位名称不要漏写
(2)画图时,要把关键长度的数据标出来。
(3)题目中,最后问题带” “的要写答句。
二,检查预习作业:
1,看图计算梯形的面积。要让学生明确互相平行的两条边分别为上底和下底,并不是上面的边和下面的边;确定了上底和下底之后再确定高。
2,学生有困难的题:用58米长的篱笆,在靠墙的地方围一块菜地(图略),这块菜地的面积是多少平方米
先指名说说梯形的面积,师板书。
对照公式,找已知条件和所缺条件。
明确:还缺上底和下底的和,通常可以用上底加下底,但这题中要用三条边的长度减去高。
算式:(58—10)×10÷2=240平方米
三,完成书上的练习四:
1,用两个完全一样的梯形拼成一个平行四边形。已知每个梯形的面积是24平方分米,拼成的三边形的'面积是多少平方分米
指名读题,比画该题。学生列式交流。
2,下面图中哪几个梯形的面积相等为什么
观察,问:这些梯形有什么共同点(高相等)
利用这个特点,你觉得可以怎么找面积相等的梯形为什么
(方法一:分别算出四个梯形的面积。
方法二:只要看上底与下底的和是否相等。)
学生数一数,算一算,交流最后结果。
3,量出下面每个梯形的上底,下底和高,算出它们的面积。
学生独立完成后交流。
4,”银苏号"滑翔机模型的尾翼是由两个完全相同的梯形组成的,它的面积是多少
观察图后说说自己准备怎么算
交流方法:
方法一,梯形面积乘2。
方法二,移动后得到一个平行四边形,算平行四边形的面积。
5,第5题,学生读题后解决。讲评时要注意
(1)计算方法的指导;
(2)单位的转换。
6,第6题,学生独立完成并校对。
梯形的面积教案 篇3
教学目标:
1、通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。
2、在复习与梳理中学会联系,进而提高综合分析解题能力。
教学过程:
一、复习梳理
1、公式的复习
我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?
师生共同进行:边回顾、边画图、边讨论;
2、教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的`同在联系和区别。
二、练习巩固
1、独立完成练习十九的第12题——看谁正确率最高!
要求:开列已知条件;写出相应的面积公式;列式解答。
2、完成第14题
先议:
⑴左图是什么图形?求面积需要哪些条件?怎么取得?
⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。
3、完成第13和15题
在求得面积之后,怎样选择算法求解。
三、综合提高:
讨论:
⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?
⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?
⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?
四、多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。
梯形的面积教案 篇4
教学内容:梯形面积的计算
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知
我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的`?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
《梯形的面积》教学反思
教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的.要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。
梯形的面积教案 篇5
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:梯形面积的计算公式。
教学难点:梯形面积计算公式的推导过程。
教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的`计算方法。
3、回忆旧知
我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
梯形的面积教案 篇6
一、知识要点
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练
【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。
62×3.14× =28.26(平方厘米)
答:阴影部分的面积是28.26平方厘米。
练习1:
1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)
答:阴影部分的面积是8.56平方厘米。
练习2:
1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)
答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:
1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3.如图所示,AB=BC=8厘米,求阴影部分的面积。
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。
I和II的面积相等。
因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以
6×4=24(平方厘米)
答:阴影部分的面积是24平方厘米。
练习4:
1.如图所示,求四边形ABCD的面积。
2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。
3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度)
扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)
三角形BOC的面积:7÷2÷2=1.75(平方厘米)
7-(2.09+1.75)=3.16(平方厘米)
答:阴影部分的面积是3.16平方厘米。
练习5:
1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的`面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。
2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。
3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
组合图形面积计算(二)
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
练习1:
1.如图所示,求阴影部分的面积(单位:厘米)
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)
答:阴影部分的面积是16.82平方厘米。
练习2:
1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。
3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米。
练习3:
1.求下面各图形中阴影部分的面积(单位:厘米)。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。
【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米。
练习4:
1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×1/4-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米。
练习5:
1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。
3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。
梯形的面积教案 篇7
【活动目标】
1.感知梯形的特征以及不同方位的梯形。
2.能在各种图形及图案中找出梯形。
3.激发幼儿学习图形的兴趣。
【活动准备】
1.各种图形若干(正方形、三角形、长方形等)。
2.幼儿操作材料。
【活动过程】
一、引题,巩固对已学图形的认识
1.出示各种图片,帮助幼儿复习对图形的认识
2.出示梯形
二、认识梯形,观察了解梯形的'特征
1.这个图形长的像什么?(出示梯子)
2.梯形宝宝有几个角?几条边?
3.它4条边有什么不同?四个角是什么样的?
4.幼儿观察讲述。
教师小结:这个图形宝宝它有四条边,四个角,其中两条边平平的还有两条边不是平平的,它的名字叫梯形。
2.认识不同的梯形
(1)出示3种不同的梯形
(2)你们好好看看,他们哪里不一样?
(3)幼儿观察比较并利用肢体做一做梯形不同的两条边。
教师小结:这些梯形,有的手一样长,有的一个手放直了一个手没有放直,有的一个手长一个手短,他们呀都是梯形。
(2)出示梯形图片,认识不同方位的梯形
教师小结:原来梯形倒着放,睡着放都可以,不管怎么放它都叫梯形。
(3)找梯形(教师出示有各种图形的图片,幼儿找梯形,请幼儿上前指出,教师随即用红色圈出梯形)
三、找一找,涂一涂
1.(出示一张有梯形的小船图案,)刚才我们认识了梯形宝宝,还和这个调皮的梯形宝宝玩了好多的游戏,你们开心吗?现在它又要和我们来玩游戏了,它已经躲到这个图案里面去了,等下请小朋友把图案里的梯形宝宝找出来,然后涂上你喜欢的颜色。请个别幼儿上来找出梯形并涂上颜色。
2.刚才小朋友找出来了两个梯形宝宝,还有许多梯形躲在各种图案里呢,你们想不想去把它们全都找出来呀。
3.交代要求:出示幼儿用书图片(梯形大聚会),请小朋友先从图案里找出梯形,然后把梯形涂上自己喜欢的颜色。
4.幼儿动手操作。
5.集中讲评
小结:今天和梯形宝宝做游戏真开心,你们开心吗?其实我们生活中还有很多梯形的东西,下次我们去找一找再来告诉大家,好不好。
梯形的面积教案 篇8
教材分析:
本单元是在学生已经初步掌握长方形和正方形的特点以及它们的周长的计算的基础上进行教学的。教材包括以下内容
1、面积与面积单位。教学时要充分利用直观,调动学生多种感官进行教学活动。 使学生理解面积的含义,对常用的面积单位(平方厘米、平方分米、平方米)建立正确的表象。教材还特别安排了面积单位和长度单位的比较,以免混淆面积和周长的计算。
2、长方形、正方形面积的计算。这一部分内容很重要,它是学生以后学习其它平面图形积计算的基础。在教学过程中,教师要着重引导学生动手操作,找出面积与边长的关系,从而总结出面积计算公式,让学生体验知识形成的过程。
3、面积单位间的进率。这里教材内容包括单位间进率和简单的换算,学好这个内容不但能加深学生对每个面积单位大小的印象,而且又能提高解决实际问题的能力。
4、公顷、平方千米。这一内容主要是介绍教大的面积单位,它常用测量土地面积,我们有时称它为“地积单位”。认识这两个面积单位,对以后的生活 、生产劳动有很大的帮助。
教学目标:
1、使学生理解面积的含义,对常用的面积单位建立起正确的表象,掌握长方形,正方形面积的计算方法,并能较熟练地进行解答,掌握面积单位间的'进率,并能进行简单计算。
2、能运用所学到的知识,技能。来解决实际生活中遇到的有关问题,增强能力。
3、在学习过程中,感受数学的乐趣,感受数学知识来源于生活,数学知识应用于生活,服务于生活。
4、通过学习活动,培养团结协作精神。
教学重点:
理解面积的含义,建立正确的常用的面积单位的表象,掌握长方形、正方形的面积的计算。
教学难点:
长方形、正方形面积单位的推导过程。
教学关键:
教师要引导学生动手操作、认真观察,找出面积与边长的关系。
第三课时
长方形、正方形的面积计算
教学内容:
课本第77~78页例2
教学目标:
1、引导学生自己去发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确的进行计算。
2、通过长方形的面积计算引导学生推导出正方形的面积计算公式。
3、初步培养学生提出问题、分析问题、解决问题的能力。
教学重点:
会计算长方形和正方形的面积。
教学准备:
课件
教学过程:
一、复习引入,自学反馈
同学们,上节课我们学习了有关面积的知识,常用的面积单位有哪些?
二、教师点拨,领悟方法
1、巧设问题,激发兴趣
我们教室地面的面积大约是多少呢?学生可能进行猜测,用面积单位来测量,教师指出:这么大的地面用面积单位来测量太麻烦,所以,我们就要研究长方形的面积怎样计算。
2、动手操作,研究方法
(教师准备三种不同的长方形,每组只选择一种进行研究。) 一种:一个长3厘米、宽4厘米的长方形 二种:一个长4厘米、宽2厘米的长方形
三种:一个长5厘米、宽3厘米的长方形
(1)学生以组为单位进行研究,想办法求出各自图形的面积。
(2)学生以组为单位进行汇报交流,说出自己的方法。(可能出现的情况:用1平方厘米来测量或只测量长和宽,相乘即是面积。)
在这个过程中教师适时地进行点拨、指导,后一种方法比较简单。
(3)师生交流,提炼方法。长方形的面积与它的什么有关系呢?独立思考后交流。XD63.com
教师指导:长方形的长摆了5排,说明是5厘米;宽摆了3排,说明是3厘米,那么,面积15平方厘米等于什么?长方形的面积=长×宽。)
(4)学生思考:求长方形的面积事实上是求什么呢? 那么同学们想一想我们教室地面的面积怎样计算呢?
课件出示:例2 学生独立完成,校对
三、知识的迁移
教师借此机会教学正方形的面积计算。我们知道正方形是一个特殊的长方形,有长方形的特点,所以正方形的面积计算也可以和长方形的面积计算方法相同。
四、联系生活,解决问题
1、我们用的数学书的面积大约有多少?先请你估计一下,再算一算。学生独立完成,汇报。
2、完成课本第78做一做。
3、完成课本第79页1、2、3、4题。
五、小结
这节课我们学习掌握了长方形和正方形面积计算公式,长方形面积等与长乘宽,正方形面积等于边长乘边长,应该注意的是计算面积单位一定要用面积单位,不要与长度单位混淆。
今天你有什么收获?
板板书设计:
长方形、正方形面积的计算
长方形的面积=长×宽
正方形的面积=边长×边长
梯形的面积教案 篇9
班级情况及学生特点分析:
我所任教的五年级二班学生共52人,因为我班的学生基础较差,上课好动,作业拖拉,虽然训练一个学年,但还是不令人十分满意 。因此教学借助多媒体课件及自制学具来激发他们的学习兴趣,设计使学生带着"想知道梯形的面积是多少吗?你用什么方法知道它们的面积呢?"先独立操作,然后再小组交流,集中小组中不同的解法。然后再全班以组进行汇报在教学中我以学生的发展为着眼点,大力培养学生的综合能力,拓宽学生视野,改变学生的方式,逐渐尝试建立发现问题――自主探究--解释应用的教学模式,确立以学生为主体的探索性学习方式。
教学内容:梯形面积的计算。
教学内容分析:
本节课是北师大教材五年级上册第二单元“图形的面积”中的一课时,教学内容是梯形的面积计算。梯形的面积是在学生掌握基本平面图形的特征和求三角形、平行四边形面积的基础上的进一步扩展,教材这样安排的目的是通过学生观察比较的活动,让每个学生懂得面积计算方法的多样化。同时,也让他们掌握梯形的面积计算公式的来源。这样,也为学生自己探索基本图形面积计算打下基础。
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程。
教学课时:1课时
教学准备:
1. 学生准备两个完全一样的梯形。
2. 老师准备多媒体课件。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的.解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结
这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。
课后反思:
!《梯形面积的计算》教学反思
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、提出问题,激发兴趣
我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
梯形的面积教案 篇10
【活动目标】
1、认识多种梯形,巩固对梯形基本特征的认识。
2、尝试用正方形纸折或剪出梯形。
3、愿意在尝试操作活动中动手动脑。
【活动准备】
1、幼儿已认识等腰梯形、三角形、圆形、正方形、长方形等图形、等腰梯形、三角形、圆形、正方形、长方形等图形若干;
2、幼儿用书、正方形纸、剪刀。
【活动过程】
一、找出梯形的明信片。
1、小狗给好朋友小猫寄了一张明信片、这真是一张特别的明信片,看看它是什么样子的。
2、教师出示等腰梯形的明信片,引导幼儿观察并讲述它象梯子,是张梯形的明信片。
3、小动物们都觉得小狗的梯形明信片真有趣,它们也都想要一张梯形的明信片。看看小狗这儿还有梯形的明信片吗?
4、教师出示多种形状的明信片,请幼儿观察并找出梯形。
二、幼儿操作活动。
1、给梯形涂色。
2、记录图形数量。
3、变梯形。
三、活动评价。
我在导入时提供的形状一种是幼儿认识的图形,一种是幼儿不认识的图形,如平行四边形,帮助幼儿辨别什么是梯形。
【活动反思】
本次活动的重点是认识梯形,难点是探索不同形状的纸变出梯形的各种方法。活动一开始,我出示了一个长方形和一个梯形请幼儿观察、比较。帮助幼儿辨别梯形的基本特征:梯形有两条平平的边,还有两条斜斜的边。
动手操作,让孩子在操作中获取新知。在接下来的.活动中,我根据教学内容设计了两个动手操作活动。第一个活动是“变梯形”,我准备了正方形、长方形和三角形,请幼儿想办法把这些形状的纸变成梯形的纸,一开始,很多幼儿都不太会,我提醒幼儿可以把它先折一折,让它变成梯形后再沿着折痕把多余的部分剪掉。幼儿通过折一折、剪一剪,把这些图形都变成了梯形,本来这里还要请幼儿把变梯形的方法记录下来,但这里时间太长了,所以我临时改变了计划,请幼儿变好后说说自己是怎样变的就可以了。
第二个操作活动是“给梯形涂色”,我准备了有各种图形拼成的人、房子、马,请幼儿找一找梯形在哪里,找到后给梯形涂上颜色。这一活动,让幼儿对梯形有了更深的印象。第二个活动中幼儿的成功率明显的提高。以上两个活动让幼儿很好地感受了知识形成的各个过程,通过操作、观察、交流等学习行为更加主动,有效。
梯形的面积教案 篇11
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:
理解、掌握梯形面积的计算公式。
教学难点:
理解梯形面积公式的推导过程。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的.底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
以上就是数学网小编分享《梯形面积的计算》数学教案的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置。
梯形的面积教案 篇12
教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。
2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。
3、学生将教科书第147页上面的两个梯形剪下来。
教学过程:
一、复习。
出示三角形图。
问:三角形的面积怎样求?
这个三角形的面积是多少?
三角形的面积计算公式我们是怎样推导出来的?
怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)
师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)
二、新课。
1.教学梯形面积的计算公式。
出示教科书第80页上面的梯形图。
问:这个图形是什么形?(梯形)
师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。
问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)
教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。
问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)
两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)
平行四边形的底等于什么?(等于梯形的上底、下底之和)
平行四边形的高和梯形的高有什么关系?(相等)
平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)
一个梯形的面积怎样算?(提示学生回答,
教师板书:(3+5)×4÷2
=8×4÷2
=32÷2
=16(平方厘米)
师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的.?(底×高)
问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)
平行四边形的高是什么?(就是梯形的高)
板书:
平行四边形的面积=(上底+下底)×高
梯形的面积=(上底+下底)×高÷2
如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:
S=(a+b)×h÷2
问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)
2.应用出的梯形面积公式计算梯形面积。
(1)出示第81页例题。
指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。
问:这个梯形的上底是多少?下底呢?
这个梯形的高是多少?
梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)
(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。
三、巩固练习。
练习十九第1、2题。
四、作业。
练习十九第3、4题。
课后: