数学高考重要思想总结
发表时间:2025-12-16数学高考重要思想总结(集合十七篇)。
✦ 数学高考重要思想总结 ✦
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
✦ 数学高考重要思想总结 ✦
2021年高考数学知识点归纳总结为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
2021年高考数学知识点归纳总结你知道吗?高中数学在学习的过程中,有很多知识点常考点。共同阅读2021年高考数学知识点归纳总结,请您阅读!
高考数学的答题顺序是什么高考数学的答题顺序:先易后难
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
高考数学的答题顺序:先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
高考数学的答题顺序:先同后异
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
点击查看:高中数学知识点总结及复习资料
高考数学的答题顺序:先小后大
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗
高考数学的答题顺序:先点后面
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
高考数学知识点归纳总结复习忌讳一
一忌“多而不精,顾此失彼”
许多同学(更多的是家长)为了在高考中领先于其它人,总是绞尽脑汁想方设法要比别人学得多,这无疑是件好事。但他们最后所采用的方法却往往是对他们最为不利的,那就是:购买和选择大量的复习资料和讲义,花去比别人多得多的时间,没日没夜的做,他们的精神非常可贵,他们的毅力非常惊人,其效果却让他们自己都非常伤心失望。有些家长甚至说:“我的小孩已经尽力了,还是没有进步,一定是太笨了”。其实,他们犯了很多科学性的错误,却不自知。
1.高中阶段所学的知识具有一定的范围,再多的复习资料、讲义,也只不过是这一范围内的知识的重复和变形。
你所做的很多题目都代表相同的知识点,代表相同的方法,对于那些你已经掌握的`知识、方法,做再多的题目还是于事无补,简单无聊的重复除了使你身陷题海,不能自拔,耗尽了你的精力不算,还使你失去了信心,因为你比别人努力,却没有得到相应的回报。2.每一套复习资料都经过编纂人员的反复推敲,仔细研究,都很系统地将相应的知识点按照一定的规律和方法融会于其中。
所以同学只要研究好一两套具有代表性的复习资料,你该学的一定都能学到,该会的都能学会。3.“丢了西瓜,捡了芝麻”的故事告诉我们,不能太贪心,这本资料也好,那本资料也不错,好的资料太多了,同学们的精力是有限的,而题目是无限的,以有限的精力去做无限的题目,永远没有尽头,必然导致你对每一套资料都没有很好的完成,都没有系统地研究,反而会因为各种资料的风格、体系的不同,而使你的学习失去全面性、系统性,多而不精,顾此失彼,是高三复习的大敌。
复习忌讳二
二忌“学而不思,囫囵吞枣”
导致很多同学身陷题海,不能自拔的另一个重要原因,就是“学而不思”,题目是知识的载体,有的同学做了很多题目,却仍然没有明白它们代表同一知识点,不但不能举一反三,甚至举三不能反一,其真正的原因,是他们没有养成思考、总结的习惯。华罗庚先生说过:“譬如我们读一本书,厚厚的一本,再加上我们自己的注解,就愈读愈厚,我们自己知道的东西也就‘由薄到厚’了”。“‘学’并不到此为止,‘懂’并不到此为透,所谓由厚到薄是消化提炼的过程,即把那些学到的东西,经过咀嚼、消化,融会贯通,提炼出关键性的东西来。”这段话充分说明了思考在学习过程中的重要性。以下是“学而不思”的几种具体表现,也许你就有过这样的经历。
1.上课以为自己听懂了,可你仍然作业不会做,去问老师的时候,老师告诉你,这就是上课讲的例题或例题的变形;总是感到有做不完的题目,觉得每个题目都很新鲜,常常遇到那种好象从未见过的题型;
2.从来不去想,怎样发展自己的强项,怎样弥补自己的不足,只知道老师叫干什么就干什么,布置了作业就做,发了试卷就考。
3.考试的时候突然觉得这就是老师讲的某个典型的东西,却有那种话到嘴边说不出的感觉,或者豁然开朗、猛然醒悟的感觉;
4.当老师要你总结一类题目的解题方法和策略或要你总结某一章所学内容的时候,你总是支支唔唔无话可说;
5.一个自己所犯的错误,只是轻轻的告诉自己,下次要注意,只简单地归结为粗心,但下次还是犯同样的错误。
学而不思,往往就囫囵吞枣,对于外界的东西,来者不拒,只知接受,不会挑选,只知记忆,不会总结。你没有在学习过程中“加入自己的注解”,怎能做到华罗庚先生说的“由薄到厚”,你不会“提炼出关键性的东西来”,就更不能“由厚到薄”,找到问题地本质,那么,你的学习就很难取得质的飞跃。
复习忌讳三
三忌“好高骛远,忽视双基”
很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。
有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。
最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。
四忌“敷衍了事,得过且过”
以下是对某校2020届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)
你做作业是为了什么?
检测自己究竟学会了没有占91/30.33%
因为老师要检查占143/47.67%
怕被家长、老师批评的占38/12.67%
说不清什么原因占28/9.33%
你的作业是怎样完成的?
复习,再联系课上内容独立完成占55/18.33%
高中高三数学的知识点归纳一、直线与圆:
1、直线的倾斜角
的范围是在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.
过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点
斜率为 ,则直线方程为 ,⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为
4、,
,① ∥ , ; ② .直线 与直线 的位置关系:
(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0
5、点
到直线 的距离公式 ;两条平行线 与 的距离是
6、圆的标准方程:
.⑵圆的一般方程:注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①
相离② 相切③ 相交9、解决直线与圆的关系问题时,要充分发挥圆的`平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)
直线与圆相交所得弦长二、圆锥曲线方程:
1、椭圆:
①方程 (a0)注意还有一个;②定义: |PF1|+|PF2|=2a ③ e= ④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2 ;2、双曲线:①方程
(a,b0) 注意还有一个;②定义: ||PF1|-|PF2||=2a ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或 c2=a2+b23、抛物线
:①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、,
.(1) ;(2) .2、数量积的定义:已知两个非零向量a和b,它们的夹角为,则数量|a||b|cos叫做a与b的数量积,记作ab,即
3、模的计算:|a|=
.算模可以先算向量的平方在上面文章中,我们学大专家已经为大家带来了,高三数学知识点。只要你能够把这些难点知识学习牢固,就可以在高考轻松取得数学高分。
✦ 数学高考重要思想总结 ✦
同志们:
加强学习、解放思想,是我们做好工作、推动事业发展的重要前提和永恒动力。在我区发展跨越关口和调整转型的大背景下,自治区党委决定开展“思想再解放、笃行新发展理念,推动高质量发展大学习大讨论”,是为了更好地贯彻落实对内蒙古重要讲话重要指示精神,更好地克服解决推动高质量发展面临的困难和问题,更好地加强改进干部队伍思想和作风建设,具有很强的现实针对性。各级各部门要高度重视,把大学习大讨论认认真真搞起来,实打实地抓下去。
开展大学习大讨论,要注重强化政治引领,把学深悟透对内蒙古重要讲话重要指示精神作为首要任务,切实用重要指示要求武装头脑、指导实践、推动工作。要聚焦目标任务,教育引导广大干部牢固树立发展是第一要务的思想,准确把握生态优先、绿色发展的导向,紧紧抓住正在做的事情把新发展理念落实到具体工作中去,在推动高质量发展上凝聚共识、寻求突破。要围绕重点内容,紧密结合实际组织开展讨论,着力提升研讨质量。要加强调查研究,找准找实改进工作的思路举措。要坚持问题导向,实打实地解决问题。要注重正向激励,促进干部担当作为。要切实加强组织领导,推动大学习大讨论健康开展、取得实效。
要原原本本学、全面准确理解掌握对内蒙古的重要讲话重要指示精神,把增强“四个意识”、坚定“四个自信”、做到“两个维护”落实到行动中,自觉向和党中央对标对表,切实解决政治站位、思想观念、责任担当、发展思路和发展措施等方面的问题,在全区凝聚起落实新发展理念、创新发展思路举措、推动高质量发展的强大动力,加快形成以生态优先、绿色发展为导向的高质量发展新路子,不断开创自治区各项事业发展的新局面。
✦ 数学高考重要思想总结 ✦
一、点关于已知点或已知直线对称点问题
1、设点P(x,y)关于点(a,b)对称点为P(x,y),
x=2a-x
由中点坐标公式可得:y=2b-y
2、点P(x,y)关于直线L:Ax+By+C=O的对称点为
x=x-(Ax+By+C)
P(x,y)则
y=y-(AX+BY+C)
事实上:∵PPL及PP的中点在直线L上,可得:Ax+By=-Ax-By-2C
解此方程组可得结论。
(-)=-1(B0)
特别地,点P(x,y)关于
1、x轴和y轴的对称点分别为(x,-y)和(-x,y)
2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)
3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)
例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。
解:如图,由公式可求得A关于直线x-2y=0的对称点
A(5,0),B关于y轴对称点B为(-1,5),直线AB的方程为5x+6y-25=0
`C(0,)
`直线BC的方程为:5x-6y+25=0
二、曲线关于已知点或已知直线的对称曲线问题
求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。
1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0
2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0
特别地,曲线F(x,y)=0关于
(1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0
(2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0
(3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0
除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f(x)|的图象。
例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:
1)写出曲线C1的方程
2)证明曲线C与C1关于点A(,)对称。
(1)解知C1的方程为y=(x-t)3-(x-t)+s
(2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:
s-b1=(t-a1)3-(t-a1)
`b1=(a1-t)3-(a1-t)+s
`B1(a1,b1)满足C1的方程
`B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上
`曲线C和C1关于a对称
我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)
`y=(x-t)3-(x-t)+s
此即为C1的方程,`C关于A的对称曲线即为C1。
三、曲线本身的对称问题
曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。
例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。
例3方程xy2-x2y=2x所表示的曲线:
A、关于y轴对称B、关于直线x+y=0对称
C、关于原点对称D、关于直线x-y=0对称
解:在方程中以-x换x,同时以-y换y得
(-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变
`曲线关于原点对称。
函数图象本身关于直线和点的对称问题我们有如下几个重要结论:
1、函数f(x)定义线为R,a为常数,若对任意xR,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。
这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。
例如对于f(x)若tR均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:
2、函数f(x)定义域为R,a、b为常数,若对任意xR均有f(a+x)=f(b-x),则其图象关于直线x=对称。
我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t))其关于M(2,0)的对称点为A(2-x,-f(2+x))
∵-f(2+X)=f(2-x)`A的坐标为(2-x,f(2-x))显然在图象上
`图象关于M(2,0)成中心对称。
若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:
3、f(X)定义域为R,a、b为常数,若对任意xR均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。
✦ 数学高考重要思想总结 ✦
“三个代表”重要思想是加强和改进党的建设的理论指南。“三个代表”重要思想为党在新世纪新阶段提出了新的任务和要求。江泽民在十六大报告中指出:
贯彻“三个代表”要求,必须使全党始终保持与是俱进的精神状态,不断开拓马克思主义理论发展的新境界;必须把发展作为党执政兴国的第一要务,不断开创现代化建设的新局面;必须最广泛最充分地调动一切积极因素,不断为中华民族伟大复兴增添新力量;必须以改革的精神推进党的建设,不断为党的肌体注入新的活力。所以,“三个代表”重要思想是我们党执政兴国成败的标准。它关系到我国的国计民生,关系到我国的繁荣发展,关系到中华民族的繁荣繁荣。
我们党成立伊来,益代表中国社会先进生产力、先进文化和人民利益的态度,领导中国人民进行新民主主义革命和社会主义建设。因此,只要我们党坚持和掌握邓小平理论和“三个代表”重要思想,就一定能够在前进的道路上取得胜利。一旦我们违反了邓小平理论和“三个代表”重要思想,在前进的道路上就会遭受挫折和失败。坚持邓小平理论和“三个代表”重要思想,是关党能否保持先进性和领导核心地位,是关社会主义事业的成败。
更是关系到我们人民的切身利益。
邓小平理论“是一个完整的科学体系,它是诸多历史条件综合运动的产物,也是一种历史发展的必然。“三个代表”是我们党的成立的基础、执政的基础、力量的源泉、党的思想建设、政之建设、组织建设和作风建设等,都要符合“三个代表”的要求。
所以,在以后的学习、工作和社会实践中,我要坚定不移的遵循邓小平理论和三个代表,以身为共产党员的纪律和要求来规范自己,做到心中有邓小平理论和三个代表,始终学习和积累邓小平理论和三个代表,只有这样,才能使我们矢志不移树立社会主义远大理想和建设有中国特色社会理论的共同理想,贯彻党的理论路线和根本宗旨。只有这样,我们才能走进共产主义社会,使我们的生活更加美好和充实,才能在发展中指导我们的思想文化生产,才能在实地做好工作。
✦ 数学高考重要思想总结 ✦
随机抽样
简介
(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;
优点:操作简便易行
缺点:总体过大不易实行
方法
(1)抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)
(2)随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
分层抽样
简介
分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。
定义
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
整群抽样
定义
什么是整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
优缺点
整群抽样的优点是实施方便、节省经费;
整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。
实施步骤
先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:
一、确定分群的标注
二、总体(N)分成若干个互不重叠的部分,每个部分为一群。
三、据各样本量,确定应该抽取的群数。
四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。
例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。
✦ 数学高考重要思想总结 ✦
当面临的数学问题不能以统一的形式解决时,可以把涉及的范围分解为若干个分别研究问题局部的解。然后通过组合各局部的解而得到原问题的解,这种思想就是分解组合思想,其方法称为分类讨论法。
分解组合,是重要的数学思想之一。对于复杂的计算题、证明题等,运用分解组合的思想方法去处理,可以帮助学生进行全面严谨的思考和分析,从而获得合理有效的解题途径。例如,等腰三角形两边长分别是4和5,求这个等腰三角形的周长。解决本题首先分类讨论:①若4为底,则5为腰,三边长分别为4,5,5,可以构成三角形,此时周长为14;②若5为底,则4为腰,三边长分别为5,4,4,可以构成三角形,此时周长为13。
✦ 数学高考重要思想总结 ✦
高考数学重要知识点整理
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
6.直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
人教版高三年级高考数学必考知识点
①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).
②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.
⑶特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.
⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.
⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
⑧每个四面体都有内切球,球心
是四面体各个二面角的平分面的交点,到各面的距离等于半径.
[注]:
i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)
ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.
简证:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知则.
iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.
iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.
简证:取AC中点,则平面90°易知EFGH为平行四边形
EFGH为长方形.若对角线等,则为正方形.
高三数学高考复习知识点
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
✦ 数学高考重要思想总结 ✦
高考、中考将于6月举行。随着“考试月”的即将到来,学生心理问题引人关注。近日,《知心姐姐》杂志社的孙玉华教授在宁做以“从‘心’开始建立和谐美好人生”为题的心理健康教育专场报告会时指出,心理状态如何会直接影响到孩子的考试成绩。一个心理状态好的高考考生成绩可以提高60至100分,反之则会降低50分左右。
孙玉华教授认为,孩子的心灵和身体一样需要均衡的营养,孩子心灵成长需要五大营养。
第一份营养:肯定
调查结果显示:口头上无意的否定使孩子无法树立自信,孩子在得不到表扬和肯定的`环境中将会逐渐变得平庸。不管别人怎么说,父母的评价永远是孩子最在乎的。
第二份营养:自由
专家建议:作为家长应该给孩子四种自由。安排时间的自由,让孩子自己管理支配时间;零花钱的自由,尽早对孩子进行理财教育,让孩子养成良好的花钱习惯;读书的自由,培养孩子的阅读能力,为其养成终身阅读的习惯打下基础;兴趣的自由,孩子的兴趣会激发孩子的创新精神和潜能。
第三份营养:情感
培养孩子感动和善良的能力。父母们常常在无意间就冷漠了孩子们的爱心,只知道为孩子付出爱,而忘记了接受孩子给予的爱,孩子的心灵世界也慢慢变得冷漠了,而父母们却全然不知。
第四份营养:宽容
家长把自己放到和孩子同样的位置和孩子一起快乐一起伤心,更容易和孩子沟通交流,宽容孩子的错误和缺点比打骂更容易获得孩子的谅解。
第五份营养:梦想
每个孩子都有很多美好的梦想,在家长们的眼里也许很不现实,但是梦想是孩子的动力,作为父母应该保护孩子的梦想。
✦ 数学高考重要思想总结 ✦
进入高三,我们必须对自己所学的各科知识的有个全面的把握,作为高三学生熟记数学的每个公式,为你为期不久的高考作好准备。下面是小编为大家整理的关于高考数学必备的重要公式归纳,希望对您有所帮助!
高考数学万能公式
概率公式
定义:p(A)=m/n,全概率公式(贝页斯公式)某事件A是有B,C,D三种因素造成的`,求这一事件发生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率
诱导公式
弧度制下的角的表示:
sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)sec(2kπ+α)=secα (k∈Z)csc(2kπ+α)=cscα (k∈Z)
角度制下的角的表示:
sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan (α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα (k∈Z)sec(α+k·360°)=secα (k∈Z)csc(α+k·360°)=cscα (k∈Z)
对数的基本性质
如果a>0,且a≠1,M>0,N>0,那么:1.a^log(a)(b)=b2.log(a)(a)=13.log(a)(MN)=log(a)(M)+log(a)(N);4.log(a)(M÷N)=log(a)(M)-log(a)(N);5.log(a)(M^n)=nlog(a)(M)6.log(a)[M^(1/n)]=log(a)(M)/n
定积分
形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。
常见函数的导数公式
① C'=0(C为常数函数)② (x^n)'= nx^(n-1) (n∈Q);③ (sinx)' = cosx④ (cosx)' = - sinx⑤ (e^x)' = e^x⑥ (a^x)' = (a^x) _ Ina (ln为自然对数)⑦ (Inx)' = 1/x(ln为自然对数 X>0)⑧ (log a x)'=1/(xlna) ,(a>0且a不等于1)⑨(sinh(x))'=cosh(x)⑩(cosh(x))'=sinh(x)
三角不等式
-|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±。..±zn|≤|z1|+|z2|+...+|zn|
数学数列
等差数列通项公式:an﹦a1﹢(n-1)d等差数列前n项和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2等比数列通项公式:an=a1_q^(n-1);等比数列前n项和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)_q^n (n≠1)
高考必考数学公式
立体图形及平面图形的公式
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f>0
抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱侧面积s=c_h斜棱柱侧面积s=c'_h
正棱锥侧面积s=1/2c_h'正棱台侧面积s=1/2(c+c')h'
圆台侧面积s=1/2(c+c')l=pi(r+r)l球的表面积s=4pi_r2
圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r
锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h
斜棱柱体积v=s'l注:其中,s'是直截面面积,l是侧棱长
柱体体积公式v=s_h圆柱体v=pi_r2h
图形周长、面积、体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则s=ah/2
已知三角形三边a,b,c,半周长p,则s=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)
和:(a+b+c)_(a+b-c)_1/4
已知三角形两边a,b,这两边夹角c,则s=absinc/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
高考数学公式总结
三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1
tan2A=(2tanA)/(1-tanA2)
(注:SinA2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
三角函数辅助角公式
Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中
sint=B/(A2+B2)’(1/2)
cost=A/(A2+B2)’(1/2)
tant=B/A
Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B
降幂公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
三角函数推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos2α
1-cos2α=2sin2α
1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3a
cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa
sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
三角函数半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin2(a/2)=(1-cos(a))/2
cos2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角函数三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
三角函数两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角函数和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
三角函数积化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
三角函数诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan’(α/2)]
cosα=[1-tan’(α/2)]/1+tan’(α/2)]
tanα=2tan(α/2)/[1-tan’(α/2)]
其它公式
(1)(sinα)2+(cosα)2=1
(2)1+(tanα)2=(secα)2
(3)1+(cotα)2=(cscα)2
证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:A+B=π-Ctan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得tanA+tanB+tanC=tanAtanBtanC
得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC
(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及
sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
✦ 数学高考重要思想总结 ✦
两角和与差的三角函数公式
sin(+)=sincos+cossin
sin(-)=sincos-cossin
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2=2sincos
cos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan2=2tan/[1-tan^2()]
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(/2)=(1-cos)/2
cos^2(/2)=(1+cos)/2
tan^2(/2)=(1-cos)/(1+cos)
另也有tan(/2)=(1-cos)/sin=sin/(1+cos)
万能公式
sin=2tan(/2)/[1+tan^2(/2)]
cos=[1-tan^2(/2)]/[1+tan^2(/2)]
tan=2tan(/2)/[1-tan^2(/2)]
万能公式推导
附推导:
sin2=2sincos=2sincos/(cos^2()+sin^2())......*,
(因为cos^2()+sin^2()=1)
再把*分式上下同除cos^2(),可得sin2=2tan/(1+tan^2())
然后用/2代替即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角的正弦、余弦和正切公式
sin3=3sin-4sin^3()
cos3=4cos^3()-3cos
tan3=[3tan-tan^3()]/[1-3tan^2()]
三倍角公式推导
附推导:
tan3=sin3/cos3
=(sin2cos+cos2sin)/(cos2cos-sin2sin)
=(2sincos^2()+cos^2()sin-sin^3())/(cos^3()-cossin^2()-2sin^2()cos)
上下同除以cos^3(),得:
tan3=(3tan-tan^3())/(1-3tan^2())
sin3=sin(2+)=sin2cos+cos2sin
=2sincos^2()+(1-2sin^2())sin
=2sin-2sin^3()+sin-2sin^3()
=3sin-4sin^3()
cos3=cos(2+)=cos2cos-sin2sin
=(2cos^2()-1)cos-2cossin^2()
=2cos^3()-cos+(2cos-2cos^3())
=4cos^3()-3cos
即
sin3=3sin-4sin^3()
cos3=4cos^3()-3cos
三倍角公式联想记忆
★记忆方法:谐音、联想
正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要挣钱(音似正弦))
余弦三倍角:4元3角减3元(减完之后还有余)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
★另外的记忆方法:
正弦三倍角:山无司令(谐音为三无四立)三指的是3倍sin,无指的是减号,四指的是4倍,立指的是sin立方
余弦三倍角:司令无山与上同理
三角函数的和差化积公式
sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]
cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]
三角函数的积化和差公式
sincos=0.5[sin(+)+sin(-)]
cossin=0.5[sin(+)-sin(-)]
-
心得体会大全顶流精选:
- 历届全会重要思想总结 | 十九大重要思想总结 | 技能高考思想总结 | 高中数学集合教案 | 数学高考重要思想总结 | 数学高考重要思想总结
coscos=0.5[cos(+)+cos(-)]
sinsin=-0.5[cos(+)-cos(-)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-osy=-2sin((x+y)/2)*sin((x-y)/2)
看过的还:
✦ 数学高考重要思想总结 ✦
导语:高考迫在眉睫,考生都在努力的复习当中,在冲刺阶段应该如何复习呢?下面就由小编为大家带来高考数学公式总结,大家一起去看看怎么做吧!
2017高考数学公式总结: 1,a(1)=a,a(n)为公差为r的等差数列。 1-1,通项公式, a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的'通项公式成立。a(k)=a+(k-1)r 则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r. 通项公式也成立。 因此,由归纳法知,等差数列的通项公式是正确的。 1-2,求和公式, S(n)=a(1)+a(2)+...+a(n) =a+(a+r)+...+[a+(n-1)r] =na+r[1+2+...+(n-1)] =na+n(n-1)r/2 同样,可用归纳法证明求和公式。(略) 2,a(1)=a,a(n)为公比为r(r不等于0)的等比数列。 2-1,通项公式, a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1). 可用归纳法证明等比数列的通项公式。(略) 2-2,求和公式, S(n)=a(1)+a(2)+...+a(n) =a+ar+...+ar^(n-1) =a[1+r+...+r^(n-1)] r不等于1时, S(n)=a[1-r^n]/[1-r] r=1时, ⑵三角函数 考点题型归纳: 通常考察正弦、余弦公式、三角形基本性质、三种基本三角函数之间的转化与角度的化简。 通常题型: Q1:带入求值,化简等; Q2:利用正弦、余弦公式转化,根据角度取值范围确定正负号,求某角某边等。 答题方法设计: 七大解题思想:如巧用数形结合、化归转化等方法解题。 ⑶概率统计 考点题型归纳: 通常考察排列、组合运用分布列罗列、期望计算等知识点。 通常题型 Q1:求某条件的概率; Q2:利用Q1所求的概率,求分布列以及期望。 答题方法设计: 如互斥时间和对立事件的巧妙运用等 ⑷数列 考点提醒归纳: 通常考察通项公式和求和公式的运用。 通常题型 Q1:求某一项,求通项公式,求数列和通式; Q2:证明,求新数列第N项和,绝对值比较等。 答题方法设计: 如通项公式三大解法:和作差,积作商,找规律叠加化简等; 求和公式三大解法:直接公式,错位相减,分组求和等。 ⑸立体几何 考点题型归纳: 通常题型 Q1:证明线面,线线,面面垂直等; Q2:求距离,求二面角等。 答题方法设计: 如直接逻辑法:面面,线面,线面垂直平行等性质的运用; 空间向量法:线面垂直,平行时用向量如何表达,公式; 等面积、体积法:找到最方便计算的图形。 ⑹解析几何 考点题型归纳: 椭圆,双曲线,抛物线方程的长短轴性质,离心率等,直线与圆锥曲线联立,求解某点,证明某直线与圆锥曲线的关系等。 通常题型 Q1:求圆锥曲线方程式; Q2:证明某点在某线某面上,求位置关系,求直线方程等。 答题模板设计: 四步理清解题思路。 ⑺导数函数 考点提醒归纳: 题型通常为求函数表达式,求某函数值,求某常数值,求单调区间,最大最小值,证明等。 答题模板设计: 七步理清解题思路。 高三数学知识点之导数公式 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2 三角函数公式 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 数学圆锥公式知识点 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py 直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h 正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2 圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l 弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=s.h圆柱体V=p.r2h 乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b 易错点5 逻辑联结词理解不准致误 错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。 函数与导数 易错点6 求函数定义域忽视细节致误 错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函 数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。 易错点7 带有绝对值的函数单调性判断错误 错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。 易错点8 求函数奇偶性的常见错误 错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。 易错点9 抽象函数中推理不严密致误 错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。 易错点10 函数零点定理使用不当致误 错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。 易错点11 混淆两类切线致误 错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。 易错点12 混淆导数与单调性的关系致误 错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。 易错点13 导数与极值关系不清致误 错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。 数列 易错点14 用错基本公式致误 错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。 易错点15 an,Sn关系不清致误 提高课堂效率,掌握推理运算能力 所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。 如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。 正确对待遇到的疑难问题,跳出题海 首先是要尽可能地通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在哪里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在哪里。自己不能解决的时候,可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会作了,而是,在会作之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,做题也失去了意义。 做适量的练习题;不少同学把提高数学成绩的希望寄托在大量做题上,这是不妥当的。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尤其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识;数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,就会得到更多的经验和教训,更重要的是养成善于思考的习惯,这将大大有利于今后的学习。
圆锥曲线
三角函数
推荐阅读:
2016高考资讯 | 2016艺考 | 2016自主招生 | 2016中国大学排行榜 | 最美校花盘点
1月高考关注:特殊类型招生与港澳高校内地招生
中国校友会网:2016年中国各类型大学排行榜
2016年全国高考考试大纲权威解读(共9科)
25所高校招办解读2016年艺术类专业招生政策
调查称2015年高校毕业生月起薪平均为4187元
武汉大学女神黄灿灿 清纯扮相引人眼球(组图) 化归,即转化与归结的意思。把有待解决或未解决的问题,通过转化过程,归结为所熟悉的规范性问题或已解决的问题中去,从而求得问题解决的思想。 人们在研究运用数学的长期实践中,获得了大量的成果,也积累了丰富的经验,许多问题的解决已经形成了固定的方法模式和约定俗成的步骤。人们把这种有规定的解决方法和程序的问题,叫做规范问题,而把一个未知的或复杂的问题转化为规范问题的过程称为问题的化归。 例如,对于整式方程(如一元一次方程、一元二次方程),人们已经掌握了等式基本性质、求根公式等理论,因此,求解整式方程的问题是规范问题,而把有关分式方程通过去分母转化为整式方程的过程,就是问题的规范化。 为了实现“化归”,数学中常常借助于“代换”,又称之为转换。代数中有恒等变换,方程、不等式的同解变换;几何中全等变换、相似变换、等积变换。转换是手段,揭示其中不变的东西才是目的,为了不变的目的去探索转换的手段就构成解题的思路和技艺。例如,已知x2+y2+2x-6y+10=0,求xy。对于初中生来说本题无法直接解出关于x,y的二元二次方程。但是如果从完全平方公式着手,已知条件可以转换为(x+1)2+(y-3)2=0。又因为偶次幂具有非负性,即(x+1)2≥0,(y-3)2≥0,所以(x+1)2=0,(y-3)2=0,从而得出x=-1,y=3。最终问题得以解决。✦ 数学高考重要思想总结 ✦
✦ 数学高考重要思想总结 ✦
✦ 数学高考重要思想总结 ✦
✦ 数学高考重要思想总结 ✦
求解数列通项
利用函数图像解题✦ 数学高考重要思想总结 ✦
更多精彩的数学高考重要思想总结,欢迎继续浏览:数学高考重要思想总结